메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Tafzeelul Kamal (Indian Institute of Technology) Gouthama (Indian Institute of Technology) Anish Upadhyaya (Indian Institute of Technology)
저널정보
대한금속·재료학회 Metals and Materials International Metals and Materials International Vol.29 No.6
발행연도
2023.6
수록면
1,761 - 1,774 (14page)
DOI
10.1007/s12540-022-01338-x

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Sintered bronze finds extensive applications in automotive and aerospace industries in the form of structural components.Powder metallurgy processing of high strength bronze with tailored porosity requires precise control over sintered density.Selection of proper alloying elements, alloy composition and processing parameters still complicates the alloy developmentprocess using experimental route. In this paper, it is demonstrated that prior prediction of sintered density using a regressionbased‘Machine Learning (ML)’ approach is an effective method for precisely controlling the degree of densification achievedduring sintering of bronze. Four different ML regression models were tested to evaluate their predictive capability. Predictionaccuracy of ‘Random Forest (RF)’ regression was found to be better with a mean absolute error of 0.024, which establishedthe efficacy of RF model in specified experimental conditions. Experimental validation of the regression model was carriedout for bronze alloyed with nickel at different compositions and temperatures. Results obtained after sintering agree with theML model predictions that suggest improved densification behavior with increasing nickel content and sintering temperature.Feature importance mapping was also generated to identify the relatively more crucial process variables that affect the sinteringresponse of bronze. This can enable one to select appropriate material processing parameters to minimize the risk ofexcessive expansion and distortion often encountered in case of liquid phase sintering of bronze. The ML model developedin this work can act as a novel tool facilitating alloy design with controlled porosity and enhanced mechanical strength.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0