메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
장혜선 (선문대학교)
저널정보
일본어문학회 일본어문학 일본어문학 제100호
발행연도
2023.2
수록면
153 - 174 (22page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
With the spread of "GNUMT (Google Neural Network Machine Translation)" programs, various machine translation errors based on previous "RBMT (Rule-Based Machine Translation)" or "Statistical Machine Translation (SMT)" methods have greatly diminished, leading to high satisfactions on the part of users. Unlike past methods, NMT (Neural Network Machine Translation) employs deep-learning methods. Thus, translation quality hinges on the amount of data in NMT. As translation quality will increase with the accumulation of data, artificial NMT is expected to continue improving at a fairly rapid pace. Compared to other language pairs, the Korean-Japanese pair often produces high quality translations since the two languages have quite similar syntactic structures and Chinese characters. Today, Artificial Intelligence identifies the context of the original text and draws appropriate expressions from accumulated corpus data. This study stemmed from the question of 'When translating synonyms, can MT (Machine Translation) recognize a situation and context and select appropriate expressions among synonyms?' The dictionary definition of synonyms is 'words with similar meaning', and even if the meanings are almost the same or similar, each word must be clearly distinguished according to the situation or context. When human translation is performed, professional translators are capable of selecting appropriate words suitable for the context and situation. Although translation quality has improved significantly due to the NMT, this paper aims to verify the ability of the machine to accurately recognize the situation and context in which the word is used. In this paper, by using a neural machine translation program, Naver's Papago, to translate six pairs of representative synonyms (Japanese) in both directions of Korean-Japanese and Japanese-Korean, we have confirmed that the neural machine translation system can recognize some degree of scenes and contexts through words in a sentence and lead to appropriate lexical selection.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0