메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이준행 (충북대학교 정보통계학과 석사과정) 권재한 (조지아 공과대학 Master of Science in Analytics 석사과정) 박진수 (충북대학교)
저널정보
한국자료분석학회 Journal of The Korean Data Analysis Society Journal of The Korean Data Analysis Society 제26권 제1호
발행연도
2024.2
수록면
117 - 134 (18page)
DOI
10.37727/jkdas.2024.26.1.117

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
미술 시장은 복합적인 문화, 경제, 사회적 특성으로 이루어져 있으며 최근 많은 관심을 받고 있다. 미술품 거래는 다양한 방식으로 이루어지며, 이중 미술품 경매는 큰 비중을 차지한다. 1920년 이후 출생한 Post-War and Contemporary Art 작가들의 경매 자료를 Artnet로부터 수집하여, 미술품 가격 예측 모형을 구현하였다. 기존 연구에서 일반적으로 사용되던 헤도닉 가격 모형 외에 회귀모형, 임의효과 모형, 정규화 모형, 트리 기반 모형, SVM 등 다양한 머신러닝 모형을 사용하여 가격 예측 성능을 비교하였다. 다양한 머신러닝 모형들을 비교하기 위해 두 가지 교차검증 방법을 사용하여 RMSE와 MAE를 비교하였다. 그 결과, 작가 정보를 활용하는 비선형 임의효과 모형이 우수한 성능을 보였다. 비선형 임의효과 모형을 사용하여 설명변수들이 가격에 미치는 영향을 분석하였다. 작가별로 시간의 흐름에 따른 다양한 패턴의 가격 곡선을 관찰할 수 있었다. 작가 정보를 활용하지 않는 머신러닝 모형 중에서는 Bagging이 가장 좋은 성능을 보였다. Bagging을 통해 변수 중요도를 구해본 결과 작품의 크기가 가격 예측에 있어 가장 영향력을 끼치는 것으로 나타났으며, 작가의 출생연도, 그림을 그린 방식, 그림을 그린 재질, 제작연도가 그 뒤를 이었다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0