메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
도태용 (국립한밭대학교) 류정래 (서울과학기술대학교)
저널정보
제어로봇시스템학회 제어로봇시스템학회 논문지 제어로봇시스템학회 논문지 제30권 제12호
발행연도
2024.12
수록면
1,321 - 1,328 (8page)
DOI
10.5302/J.ICROS.2024.24.0217

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Integrating iterative learning control (ILC) with feedback control systems progressively enhances tracking performance by learning from data, such as control inputs and tracked errors accumulated over multiple trials. Despite the integration of ILC systems with existing feedback control systems, learning controllers have often been designed without effectively leveraging the information used in feedback controller design. Furthermore, the improper utilization of this information can degrade the performance of ILC systems. In this study, the ILC system comprises two learning filters: a learning filter and a robustness filter. The learning filter is directly derived from the inverse of the nominal feedback control system, while the robustness filter is a low-pass filter that ensures robust convergence under uncertainty. To design learning controllers, uncertainty is isolated using linear fractional transformation (LFT) within a transfer function based on established convergence conditions. A robust convergence condition in the -norm sense is formulated, and it is represented by the robustness filter, uncertainty weighting function, feedback controller, and nominal plant. Based on the derived convergence condition, criteria for the straightforward design of learning controllers were presented. The performance weighting function employed in the design of the feedback control system was excluded from the design of the ILC system, thereby ensuring unobstructed enhancement of the learning performance. Finally, simulation studies were conducted to demonstrate the feasibility of the proposed method.

목차

Abstract
I. 서론
II. 문제 설정
III. 수렴 조건과 강인 필터의 설계
IV. 시뮬레이션 연구
V. 결론 및 추후 과제
REFERENCES

참고문헌 (13)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-25-02-091208846