메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Wonbin Kim (Yonsei University)
저널정보
사단법인 한국언어학회 언어학 언어학 제100호
발행연도
2024.12
수록면
283 - 306 (24page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This study aims to (i) identify the key syntactic complexity-related characteristics that distinguish between learners studying English as a second language (ESL) and learners studying English as a foreign language (EFL) across three communication modes, (ii) investigate whether Korean learners are closer to ESL or EFL in terms of the identified syntactic characteristics in each mode, and (iii) test whether a machine learning-based classification model can effectively perform in addressing these two objectives. For the first objective, this study utilized the feature importance metric within the XGBoost classifier to assess the importance of fourteen syntactic complexity measures in differentiating between ESL and EFL learners in essays, dialogues, and monologues. For the second objective, this study trained the XGBoost classifier to sort new input data into ESL and EFL based on the key measures obtained from the first objective. For the third objective, evaluation metrics to assess the XGBoost classifier’s performance were employed. The results demonstrated that the XGBoost classifier can successfully identify the main syntactic characteristics that differentiate between ESL and EFL learners, Korean learners are closer to EFL learners in every mode, and the XGBoost classifier has the potential to serve as a new approach to reveal these two findings.

목차

1. Introduction
2. Background
3. Method
4. Results
5. Discussion and Conclusion
References
Abstract

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-25-02-092166294