메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Hangwook Jeong (Gangneung-Wonju National University) Min-Woo Kwon (Seoul National University of Science and Technology)
저널정보
대한전자공학회 JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE Journal of Semiconductor Technology and Science Vol.25 No.1
발행연도
2025.2
수록면
1 - 8 (8page)
DOI
10.5573/JSTS.2025.25.1.1

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Conventional MOSFETs have reached a physical limit with a subthreshold swing of approximately 60 mV/dec at room temperature. To overcome this, various Beyond C-MOS devices are being researched, with the feedback FET (FBFET) attracting attention due to its highly ideal subthreshold swing and high on-current. However, the FBFET operates much more sensitively compared to conventional MOSFETs. Therefore, analyzing the electrical characteristics of the device as its physical parameters are varied is crucial in FBFET research. Despite this importance, research and application of FBFETs have not yet made significant progress, and there is a lack of data analyzing the characteristic changes with parameter variations. In this study, we used a Dual-Gate FBFET to observe changes in electrical characteristics by varying the lengths of the gate and control gate, oxide and body thickness, doping concentration, and the concentration and level of interface traps. An increase in the gate and Control gate lengths led to an increase in threshold voltage, and an increase in oxide thickness also resulted in a higher threshold voltage. An increase in body thickness led to an increase in both on-current and threshold voltage, and an increase in P− and N− doping concentrations resulted in a higher threshold voltage. Additionally, the application of interface traps in the gate and control gate regions increased the threshold voltage. This study’s comparison and analysis of these simulation results confirmed that parameter changes in the gate region critically impact device operation more than changes in the control gate region. This finding highlights the need to pay closer attention to parameter variations in the gate region compared to the control gate during device design and manufacturing processes. We expect that this analysis will significantly aid further research and application of FBFET devices.

목차

Abstract
Ⅰ. INTRODUCTION
Ⅱ. ARCHITECTURE AND MECHANISM
Ⅲ. ANALYSIS METHOD
Ⅳ. RESULTS AND DISCUSSION
Ⅴ. CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-25-02-092293803