메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Seo, Keonwon (Kyungpook National University)
저널정보
대한공간정보학회 대한공간정보학회지 대한공간정보학회지 제33권 제1호
발행연도
2025.3
수록면
21 - 28 (8page)
DOI
10.7319/kogsis.2025.33.1.021

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Recently, image acquisition has become common in various application fields such as self-driving cars, drones, robots, and deep learning. To extract accurate visual information from a set of images, it is essential to accurately calculate the camera pose and object coordinates, and it is important to plan the camera view geometry. To achieve this, analysis of the relationship between the geometry of the camera view and the calculation accuracy of camera pose and object coordinates is required, but this has not been well studied yet. Therefore, this study presents a method to quantify the effect of different types of camera motions on the calculation accuracy of camera pose and object coordinates. The tested camera motions are sidewalk motion, forward motion, and rotation motion. For fast analysis, we modeled the relationships among image coordinates, camera pose, and object coordinates in homography-based matrices and vectors. As a result of the experiment, it was found that accuracy due to sidewalk motion and forward motion is affected by baseline length. Additionally, rotation motions ranging from -20° to 10° were found to produce similar accuracies in camera pose and object coordinate calculations.

목차

Abstract
1. Introduction
2. Methodology
3. Results and Analysis
4. Concluding Remarks
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0