메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한기계학회 Journal of Mechanical Science and Technology Journal of Mechanical Science and Technology Vol.21 No.1
발행연도
2007.1
수록면
106 - 112 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In recent, stern wedges and stern flaps are installed for the improvement of propulsion and resistance performance of fast-ferry. For example, U.S. Navy has achieved the development of stern wedges and stern flaps for destroyer to enhance powering performance. It is generally known that stern wave systems as well as bow wave systems play an important role in the wave making resistance performance for fast-ferry. The bow diverging wave system has been usually simulated by an interface tracking method (ITM). However, it is difficult to apply the ITM to the numerical simulation of the stern wave and spray phenomenon because of over-turning wave and wave-breaking. Therefore, to solve this problem an interface capturing method (ICM) is introduced. In the present study, a numerical method with the ICM is developed to evaluate the resistance performance of fast-ferry. Incompressible Navier-Stokes and continuity equations are employed in the present study and the equations are discretized by Finite Difference Method in the general curvilinear coordinate system. CIP (Constrained Interpolated Profile) method is used for the discretization of convection terms, respectively. The free surface location is determined by level set method. In order to validate the numerical method, numerical simulations for Wigley hull are performed and their results are compared with experimental results. Several numerical simulations of ship waves for fast-ferry are performed to find advantages of appendage installation. Through those simulations, the computed results, such as wave profile and resistance coefficient, are compared with the measured results which are achieved from Samsung Ship Model Basin (SSMB). The effects of transom appendage on the resistance performance are discussed with the computed results in this study.

목차

1. Introduction
2. Governing Equations and Boundary Conditions
3. Numerical Method
4. Results and Discussion
5. Conclusions
References

참고문헌 (10)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-550-017646513