메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국지능시스템학회 한국지능시스템학회 논문지 퍼지 및 지능 시스템학회 논문지 제11권 제2호
발행연도
2001.4
수록면
109 - 114 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 비선형 제어시스템의 성능 개선을 위한 새로운 신경망 직접 적응제어 알고리즘을 제시하였다. 제어칙은 Gaussian RBF 신경망을 이용한 제어입력과 근사화 오차 및 외란의 영향을 제거하기 위한 보조제어 입력으로 구성하였다. 또한 신경망에 사용된 가중치와 보조입력의 파라미터를 조정하기 위한 적응칙은 Lyapunov 안정도 이론에 의하여 구하였다. 이렇게 함으로써 외란이나 근사화오차에 관계없이 플랜트와 기준모델 사이의 오차가 0이 되도록 하는 알고리즘을 구할 수 있었다. 또한 제시된 알고리즘의 효용성을 알아보기 위하여 Duffing forced oscillation 시스템에 대하여 시뮬레이션 하여본 결과 만족할만한 성능을 얻을 수 있었다.

목차

요약
ABSTRACT
1. 서론
2. 문제 설정
3. 신경망 적응제어 알고리즘
4. 시뮬레이션 및 검토
5. 결론
참고문헌
저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-028-014804261