메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
법무부 국제법무정책과 통상법률 통상법률 제52호
발행연도
2003.8
수록면
8 - 51 (44page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The terms of science and risk assessment in the Sanitary and Phytosanitary Agreement (SPS Agreement) have a crucial role in solving trade disputes concerning Genetically Modified Foods(GMFs) regulatory measures, including the ongoing dispute between the United States and European Union in the World Trade Organization(WTO). If the term of “risk” is so widely interpreted enough to include the so-called “virtual risk” or “unknown risk” that is unidentificiable risk by scientific methods, any trade measures to prevent international trade of GMFs would be conform with the SPS Agreement. Because the concept of virtual risk is directly linked to the precautionary principle, it will make the requirement of scientific risk assessment under the SPS Agreement uneffective and void. It also imples that the global trade order would be threatened in the very near future. To guarantee the SPS Agreement as well as the world trade system to function well, the meanings of “science” and “risk” should be clarified restrictively to exclude pseudo-scientific claims that unreasonably put stress on theoretical scientific uncertainty. With this in mind, the WTO should establish the standard for admitting and evaluating scientific evidence submitted by the parties. In assessing the value of scientific evidence, the weight should be ascribed to the evidence confirmed by sound scientific principles in the light of falsificability. To achieve the balance between the aims of the SPS Agreement and the values of human life and health, the dynamic character of science should be dynied, and the WTO panels have to screen out evidence that does not deserve to be called “sound science."

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-360-002333057