메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Sojung Kim (Texas A&M University-Commerce) Young-Jun Son (The University of Arizona)
저널정보
대한산업공학회 Industrial Engineering & Management Systems Industrial Engineering & Management Systems Vol.16 No.2
발행연도
2017.6
수록면
240 - 252 (13page)
DOI
10.7232/iems.2017.16.2.240

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
A dynamic-cognitive lane selection model is proposed under an agent-based traffic simulation. For the realistic lane selection modeling, this study employs two algorithms: (1) the extended decision field theory (EDFT), a psychological decision-making algorithm to represent complex real-time deliberation of drivers, and (2) the Bayesian network (BN) to mimic limited perception capabilities of drivers on dynamic road conditions. To calibrate the proposed lane selection model, a single next-generation simulation (NGSIM) traffic dataset on Peachtree Street in Atlanta, Georgia has been used. During the calibration process, its modeling accuracy is compared with the NGSIM discretionary lane changing model via a cross-validation approach. The calibrated lane selection model is then implemented into the AnyLogic® agent-based simulation platform in conjunction with a NGSIM car-following model in order to evaluate the performance of the proposed lane selection model in regard to the physical movements of vehicles on the roadway. Computational execution time and the lane changing behavior of drivers are investigated in the proposed lane selection model and compared with conventional lane selection models. The results have demonstrated the modeling flexibility and accuracy of the proposed lane selection model.

목차

ABSTRACT
1. INTRODUCTION
2. BACKGROUND
3. EXTENDED DECISION FIELD THEORY-BASED LANE SELECTION MODEL
4. MODEL CALIBRATION
5. SIMULATION STUDY
6. CONCLUSION
REFERENCES

참고문헌 (28)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-530-000982403