메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Oh, Jae Hong (Korea Maritime and Ocean University) Lee, Chang No (Seoul National University of Science and Technology)
저널정보
한국측량학회 한국측량학회지 한국측량학회지 제36권 제3호
발행연도
2018.6
수록면
127 - 133 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Electric transmission towers are facilities to transport electrical power from a plant to an electrical substation. The towers are connected using power lines that are installed with a proper sag by loosening the cable to lower the tension and to secure the sufficient clearance from the ground or nearby objects. The power line sag may extend over the tolerance due to the weather such as strong winds, temperature changes, and a heavy snowfall. Therefore the periodical mapping of the power lines is required but the poor accessibility to the power lines limit the work because most power lines are placed at the mountain area. In addition, the manual mapping of the power lines is also time-consuming either using the terrestrial surveying or the aerial surveying. Therefore we utilized multiple overlapping images acquired from a low-cost drone to automatically reconstruct the power lines in the object space. Two overlapping images are selected for epipolar image resampling, followed by the line extraction for the resampled images and the redundant images. The extracted lines from the epipolar images are matched together and reconstructed for the power lines primitive that are noisy because of the multiple line matches. They are filtered using the extracted line information from the redundant images for final power lines points. The experiment result showed that the proposed method successfully generated parabolic curves of power lines by interpolating the power lines points though the line extraction and reconstruction were not complete in some part due to the lack of the image contrast.

목차

Abstract
1. Introduction
2. Method
3. Experiment
4. Conclusion
References

참고문헌 (7)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-533-003119332