메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
고수정 (인덕대학교)
저널정보
한국디지털콘텐츠학회 디지털콘텐츠학회논문지 디지털콘텐츠학회논문지 제19권 제9호
발행연도
2018.9
수록면
1,769 - 1,778 (10page)
DOI
10.9728/dcs.2018.19.9.1769

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
빅데이터를 활용한 가치가 증대됨에 따라서 기업 뿐 아니라 교육 분야에서도 빅데이터 분석 기술을 활용한 여러 연구가 진행되고 있다. 본 논문에서는 빅데이터 군집 분석을 이용하여 학습성취도를 종단적으로 예측하는 방법을 제안한다. 제안한 방법에서는 한국아동·청소년패널조사(KCYPS) 자료의 중학교 1학년 학생의 학습 습관 유형을 기반으로 학생들을 Kmeans 알고리즘을 이용하여 학습 습관이 비슷한 그룹으로 분류하고, 그룹의 특징을 추출한다. 다음으로, 이와 같이 추출한 그룹의 특징을 이용하여 테스트 집합의 중학교 1학년 학생을 코사인 유사도를 사용하여 비슷한 학습 습관을 갖는 그룹으로 분류한 후, 이웃을 선정하고 학습성취도를 예측하였다. 본 논문에서 제안한 방법은 중학교의 학습 습관이 대학 및 전공 만족도까지 밀접한 영향을 미쳐서 고등학교의 학습성취도 뿐만 아니라 대학 및 전공에 대한 만족도까지도 예측이 가능하다는 것을 증명하였다.

목차

[요약]
[Abstract]
Ⅰ. 서론
Ⅱ. Kmeans알고리즘을 이용한 군집과 정규화
Ⅲ. 군집 분석
Ⅳ. 그룹의 특징 추출과 학습성취도 종단 예측
Ⅴ. 성능 평가
Ⅵ. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-004-003599729