메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Jung-Woo Chang (Sogang University) Suk-Ju Kang (Sogang University)
저널정보
대한전자공학회 JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE Journal of Semiconductor Technology and Science Vol.18 No.5
발행연도
2018.10
수록면
547 - 559 (13page)
DOI
10.5573/JSTS.2018.18.5.547

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
A Forward vehicle detection and lane detection algorithms are essential components of many advanced driver assistance systems. Conventional vehicle detection algorithms exhibit certain problems, including high computational complexity and low detection accuracy. This paper proposes a monocular vision-based vehicle detection and tracking algorithm using ego-lane information to improve computational efficiency and robustness. Firstly, vehicle candidate regions were determined to define the region of interest (ROI), which reduces the computation time. Secondly, the detected ROI was classified by means of the adaptive boosting cascade classifier, which is based on Haar-like features, in order to detect the vehicles’ rear view. Thirdly, edge and rear-light histograms obtained from previously detected vehicle locations were employed to predict the area in which the vehicle is located. Experiments were conducted to evaluate the proposed algorithm under various weather and illumination conditions using iROADS [34], one of the most popular datasets. The results show that the proposed algorithm performed well in real time (computation time of 15 ms) and showed high reliability in various road conditions.

목차

Abstract
I. INTRODUCTION
II. RELATED WORK AND CONTRIBUTION
III. PROPOSED METHOD
IV. EXPERIMENTAL RESULTS
V. CONCLUSION
VI. ACKNOWLEDGEMENT
REFERENCES

참고문헌 (35)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-569-000047828