메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
신기훈 (엔키아) 김철 (한양대학교) 남상훈 (엔키아) 박성재 (엔키아) 유성수 (엔키아)
저널정보
한국에너지학회 에너지공학 에너지 공학 제27권 제4호 (통권 제96호)
발행연도
2018.12
수록면
103 - 110 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 Mean Absolute Percentage Error (이하 MAPE)와 Symmetric Mean Absolute Percentage (이하 sMAPE)의 새로운 접근법을 이용한 시계열 예측 모델의 평가 방법을 소개한다. MAPE, sMAPE 에는 다음과 같은 문제점이 있다. 데이터 집합에서 관측 값이 0일 경우 평가할 수 없고, 관측 값이 0에 매우 가깝다면 과도한 평가 값을 측정한다. 관측 값과 예측 값 간에 동일한 오차를 가지더라도 다른 값으로 평가하는 문제도 가지고 있다. 동일한 오류 값이 과대 예측되었는지 아니면 과소 예측되었는지에 따라 다른 평가 값을 측정하거나 관측값의 부호와 예측 값의 부호가 서로 다르면 그 오차는 평가 값에 반영되지 않는다.
이러한 문제는 Maximum Mean Absolute Percentage Error (이하 mMAPE)에 의해 해결하였다. 우리는 MAPE 평가 방법의 분모에서 관측 값을 사용하는 대신 최대 절대 값을 사용했다. 최대 절대 값이 1보다 작으면 분모를 제거하여 0 값이 정의되지 않은 문제와 미세한 값일 경우 과대 측정되는 문제를 해결하였다. Beijing PM2.5의 온도 데이터와 시뮬레이션 데이터를 통해 mMAPE 와 다른 평가 방법들의 결과 값을 비교하였으며, 위의 문제들을 해결할 수 있음을 검증하였다.

목차

요약
Abstract
1. 서론
2. 이론적 배경
3. 제안 알고리즘
4. 실험 및 결과 분석
5. 응용
6. 결론
References

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0