메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국지식정보기술학회 한국지식정보기술학회 논문지 한국지식정보기술학회 논문지 제10권 제5호
발행연도
2015.1
수록면
593 - 601 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
There are many various methods to deal with the reliability of systems. Fuzzy set theory is the one of the methods in order to evaluate the reliability of systems. In the fuzzy set theory the membership degree is represented by real number, where ∈ . Sometimes the membership degree of the fuzzy sets can not be represented by real number because of the membership degree itself may has the vagueness. To resolve the this problem the interval valued fuzzy sets are introduced. In the interval valued fuzzy sets the membership degree is represented by interval, where ⊆ . In some domains we need the concept of the truth membership function to supported by the evidence and the falsity membership function against by the evidence, where , ∈ . In order to deal with these the intuitionistic fuzzy sets are proposed. The classic sets, the fuzzy sets, the interval valued fuzzy sets, and the intuitionistic sets are able to only capture the concept of the incompleteness not the indeterminacy of information. In this study we propose a new way to evaluate the reliability of systems based on the interval neutrosophic sets. The interval neutrosophic set is a part of the neutrosophic sets which are able to deal with the nature of neutralities. In the interval neutrosophic sets these are consisted of three components such as truth membership function , indeterminacy membership function , and falsity membership function . , , ⊆ . Therefore we can manipulate the indeterminacy based on the indeterminacy membership function of the interval neutrosophic sets. The proposed method may be used to analyze the reliability of systems which have the concept of the indeterminacy.

목차

등록된 정보가 없습니다.

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0