메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국융합학회 한국융합학회논문지 한국융합학회논문지 제10권 제4호
발행연도
2019.1
수록면
1 - 6 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
신경회로망은 과거 데이터로부터 유용한 정보를 추출해서 주가지수의 이동 방향을 예측하는데 사용되어 왔다. 주가지수의 상승 또는 하락 방향을 예측하는 기존 연구는 지수의 작은 변화에도 상승이나 하락을 예측하므로 이를 기반으로 지수 연동 ETF를 매매 하면 손실이 발생할 가능성이 높다. 본 논문에서는 ETF 매매 손실을 줄이고 매매 당 일정 이상의 수익을 내기 위한 일별 KOrea composite S0tock Price Index (KOSPI)의 이동 방향을 예측하는 신경회로망 모델을 제안한다. 제안된 모델은 이동 방향 예측을 위해 전일 대비 지수 변동률이 상승(변동률), 하락(변동률)과 중립(변동률)을 표시하는 출력을 갖는다. 예측이 상승이면 레버리지 Exchange Traded Fund (ETF)를, 하락이면 인버스 ETF를 매수한다. 본 논문에서 구현된 신경회로망 모델 중 PNN1의 Hit ratio (HR)은 학습에서 0.720, 평가에서 0.616이다. 평가용 데이터로 ETF 매매를 시뮬레이션하면 수익률은 8.39 ~ 16.32 %를 보인다. 또한 제안된 이동 방향 예측 신경회로망 모델이 주가지수 예측 신경회로망 모델 보다 ETF 매매 성공률과 수익률에서 더 우수하다.

목차

등록된 정보가 없습니다.

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0