메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이종화 (동의대학교) 이현규 (부경대학교)
저널정보
한국인터넷전자상거래학회 인터넷전자상거래연구 인터넷전자상거래연구 제20권 제6호
발행연도
2020.12
수록면
75 - 89 (15page)
DOI
10.37272/JIECR.2020.12.20.6.75

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The 4th Industrial Revolution is eddying out the boundaries between existing industries with technological advances and changes in the economic and social environment, making to mutual convergences and new value creations. With the development of Artificial Intelligence, the roles of humans and machines are changing, leading to changes in future work environments. Beyond simple repetitive tasks throughout the industries, it has a wide range of impacts on the lives of modern people. With the proliferation of Artificial Intelligence jobs, newly graduated candidates are experiencing double difficulties such as job changes and competition with Artificial Intelligence.
This study aims to solve the employment problem through the analysis of employment information in accordance with the changes in the 4th Industrial Revolution era. Latent Semantic Analysis was applied using the Singular Value Decomposition process and cosine similarity to the recruitment information registered in the recruitment portal. As a result, the priority of specifications required for employment by industry was determined and visualized in a hierarchical structure using a sunburst chart. In addition, it was possible to confirm the relationship between a specific industry and job, and provided a web page as a dashboard through the field research process of the vast employment information analyzed for potential meaning. This article can be supportive for the later study of analyzing industrial competency and developing job recommendation system.

목차

Abstract
Ⅰ. 서론
Ⅱ. 이론적 배경
Ⅲ. 연구방법과 프레임워크
Ⅳ. 연구 알고리즘 실험과 결과
Ⅴ. 결론
참고문헌

참고문헌 (28)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-323-001451525