메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이지원 (카이스트) 서광균 (카이스트) 이하늬 (카이스트) 유정은 (카이스트) 노준용 (카이스트)
저널정보
한국컴퓨터그래픽스학회 컴퓨터그래픽스학회논문지 컴퓨터그래픽스학회논문지 제27권 제3호
발행연도
2021.7
수록면
31 - 42 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 연구에서는 딥러닝을 기반으로 하여 실내와 실외 이미지 모두에서 알맞은 광원을 추출하는 방법론을 소개한다. 네트워크는 단일 LDR 이미지로부터 실내 혹은 실외 배경에 맞는 광원을 low dynamic range (LDR) 환경 맵으로 추출하는 Crop-to-PanoLDR 네트워크와 추출된 LDR 환경 맵을 빛의 정보를 담은 high dynamic range (HDR) 환경 맵으로 생성하는 LDR-to-HDR 네트워크 두 단계로 구성된다. 이와 같은 과정을 통해 최종적으로 생성된 HDR 환경 맵은 주어진 이미지에서 가상 객체를 렌더링할 때 적용되어 가상 객체를 조명하는 빛의 방향과 주변광 등을 확인함으로써 자연스러운 렌더링을 가능하게 하는지 검증한다. 본 연구에서 제안한 방법론의 우수성은 실내를 배경으로 한 이미지로만 구성한 데이터로 학습한 결과와 실외를 배경으로 한 이미지로만 학습한 결과 등과 비교하여 검증하였다. 또한, 실내와 실외를 구분하는 역할을 수행하는 손실함수가 학습 결과에 미치는 영향을 실험, 검증하였다. 최종적으로 본 연구에서 생성된 환경 맵을 기존의 연구 결과와 비교실험하는 사용자 테스트를 진행하였고 더 좋은 결과를 확인할 수 있었다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 제안하는 방법
4. 실험 결과
5. 결론 및 향후 연구
References

참고문헌 (2)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-004-001843969