메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김정용 (국립과학수사연구원 법유전자과)
저널정보
대한법의학회 대한법의학회지 대한법의학회지 제45권 제1호
발행연도
2021.1
수록면
14 - 21 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Numerous methods for human body fluid identification using microbiological markers specific to different human body parts are well-established in forensic science. However, method for vaginal fluid screening have not been standardized yet. Therefore, in this study, a real-time polymerase chain reaction based assay for vaginal fluid identification was devised using bacteria residing in human vagina. This method employed three markers, namely Lactobacillus iners, Lactobacillus crispatus, and Bacteroides fragilis. L. iners and L. crispatus were chosen due to their high abundance in the vagina, whereas B. fragilis resides in the rectum. To examine the suitability of the new method for forensic microbial applications, a study of the distribution of vaginal flora in 143 Korean women was performed, along with characterization of the specificity, and performance of the new assay. Additionally, a casework study based on 130, 21, 20 and 17 DNA samples collected from the vagina, anus, saliva, blood, respectively, was carried out. L. iners (80.4%) and L. crispatus (55.2%) were detected with high abundance in the vagina of Korean women. The specificity of these markers was verified using microbial DNA from 23 species. This method could detect at least 1,000 copies/μL of microorganisms for all markers, thereby highlighting its robust sensitivity for vaginal fluid identification. The casework study confirmed these findings, with 89.2% (116/130) detection of vaginal fluid-derived DNA samples, and no false positives identified from the other sources studied. In conclusion, the developed method is expected to be efficient for preliminary microbiological analysis of vaginal samples in forensics.

목차

등록된 정보가 없습니다.

참고문헌 (32)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0