메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
ChanYoung Kim (KAIST) EungChang Mason Lee (KAIST) JunHo Choi (KAIST) JinWoo Jeon (KAIST) SeokTae Kim (Korea Electric Power Corporation) Hyun Myung (KAIST)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2021
발행연도
2021.10
수록면
249 - 254 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Unmanned Aerial Vehicles (UAVs) have been intensively used in various fields thanks to their excellent maneuverability. However, the short operation time of the UAV is limiting the further utilization of the UAV. The limitation of the UAV can be overcome by landing on ground vehicles and charging the battery on them. Therefore, diverse researches have been done on robust landing on ground platforms. Unfortunately, the existing autonomous landing methods have such limitations that a) special tag or marker should be attached on the landing site; b) visibility of the landing site must be secured; c) platform should be static; In this paper, to robustly estimate the relative pose of the moving platform and successfully land on it, we propose a novel robust landing system of the UAV. A neural network based object detection is used to recognize the landing site without a special tag or marker, and an Ultra-wideband (UWB) sensor is adopted to compensate for the limited field of view of the camera. The Extended Kalman Filter (EKF) for estimating the relative position of the moving platform by fusing the information obtained from various sensors is developed. Additionally, a robust autonomous landing controller is also designed. The performance of the proposed method is verified by the simulation of the UAV and the moving platform.

목차

Abstract
1. INTRODUCTION
2. RELATEDWORKS
3. METHODOLOGY
4. EXPERIMENTS AND RESULTS
5. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0