메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2021
발행연도
2021.10
수록면
925 - 929 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The Unmanned Surface Vehicles (USVs), which operate without a person at the surface, are used in various naval defense missions. Various missions can be conducted efficiently when a swarm of USVs are operated at the same time. However, it is challenging to establish a decentralised control strategy for all USVs. In addition, the strategy must consider various external factors, such as the ocean topography and the number of enemy forces. These difficulties necessitate a scalable and transferable decision-making module. This study proposes an algorithm to derive the decentralised and cooperative control strategy for the USV swarm using graph centric multi-agent reinforcement learning (MARL). The model first expresses the mission situation using a graph considering the various sensor ranges. Each USV agent encodes observed information into localized embedding and then derives coordinated action through communication with the surrounding agent. To derive a cooperative policy, we trained each agent’s policy to maximize the team reward. Using the modified prey-predator environment of OpenAI gym, we have analyzed the effect of each component of the proposed model (state embedding, communication, and team reward). The ablation study shows that the proposed model could derive a scalable and transferable control policy of USVs, consistently achieving the highest win ratio.

목차

Abstract
1. INTRODUCTION
2. BACKGROUNDS
3. FORMULATION
4. METHODOLOGY
5. TRAINING MARL POLICY
6. EXPERIMENTS
7. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0