메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
崔真姫 (白石大学校) 陸心芬 (南山大学)
저널정보
한국일본문화학회 일본문화학보 日本文化學報 第96輯
발행연도
2023.2
수록면
25 - 38 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
this study compared corpus with machine translation and analyzed the characteristics of machine translation. The corpus search for “geosida”(139 cases) had 10 expressions, while there were 6 expressions, for Papago and 7 expressions, for Google. Machine translation supports more than 94.2% of modality, which seems to be simplified compared to a corpus To determine performance by a machine translation engine.
The results showed that the match rate between corpus and Papago was 79 cases, moreover, Papago was more similar to corpus than to Google. However, both are somewhat similar, but the consistency rate is low. To determine the characteristics of machine translation, we analyzed examples that were inconsistent with the corpus. In machine translation, “noda” was translated mainly for “-n + geosida” , “noda”“kotoda” was translated for “- neun+ geosida ” , and “daro” was translated for “- l+ geosida”.Thus, it has been confirmed that machine translation tends to be stereotyped according to tenses. In machine translation, “geosida”, which represents various nuances of meaning seems to be stylized rather than used in various forms.

목차

1. はじめに
2. 先行研究
3. 調査の概要
4. 結果と考察
5. まとめ
参考文献
要旨

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0