메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Luo Kui (Central South University) Wang Zhifei (Central South University) Zhuang Kai (Central South University) Yuan Shishan (Hunan Normal University) Liu Fei (Central South University) Liu Aihua (Central South University)
저널정보
대한생화학·분자생물학회 Experimental and Molecular Medicine Experimental and Molecular Medicine 제54권
발행연도
2022.5
수록면
1 - 11 (11page)
DOI
10.1038/s12276-022-00761-9

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Increased focus has been placed on the role of histone deacetylase inhibitors as crucial players in subarachnoid hemorrhage (SAH) progression. Therefore, this study was designed to expand the understanding of SAH by exploring the downstream mechanism of the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) in SAH. The expression of TDP-43 in patients with SAH and rat models of SAH was measured. Then, western blot analysis, immunofluorescence staining, and transmission electron microscope were used to investigate the in vitro effect of TDP-43 on a neuronal cell model of SAH established by oxyhemoglobin treatment. Immunofluorescence staining and coimmunoprecipitation assays were conducted to explore the relationship among histone deacetylase 1 (HDAC1), heat shock protein 70 (HSP70), and TDP-43. Furthermore, the in vivo effect of HDAC1 on SAH was investigated in rat models of SAH established by endovascular perforation. High expression of TDP-43 in the cerebrospinal fluid of patients with SAH and brain tissues of rat models of SAH was observed, and TDP-43 accumulation in the cytoplasm and the formation of inclusion bodies were responsible for axonal damage, abnormal nuclear membrane morphology, and apoptosis in neurons. TDP-43 degradation was promoted by the HDAC1 inhibitor SAHA via the acetylation of HSP70, alleviating SAH, and this effect was verified in vivo in rat models. In conclusion, SAHA relieved axonal damage and neurological dysfunction after SAH via the HSP70 acetylation-induced degradation of TDP-43, highlighting a novel therapeutic target for SAH.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0