메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
박윤환 (충북대학교) Eun Young Ko (Dodram Pig Farmers’ Cooperative Icheon 17405 Korea) Kwangwook Park (Dodram Pig Farmers Cooperative) Changhyun Woo (Dodram Pig Farmers Cooperative) Jaeyoung Kim (Chungbuk National University) Sanghun Lee (충북대학교) 박상훈 (충북대학교) 김윤아 (충북대학교) Gyutae Park (Chungbuk National University) Jungseok Choi (Chungbuk National University)
저널정보
한국축산학회(구 한국동물자원과학회) 한국축산학회지 한국축산학회지 제64권 제1호
발행연도
2022.1
수록면
135 - 142 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
It is impossible to know the amount of pork primal cut by pig carcass grade which is determined only by carcass weight and backfat thickness in the Korean Pig Carcass System. The aim of this study was to investigate the correlation between the pig carcass grade and the amount of pork primal cut estimated with AutoFom III. A total of 419,321 Landrace, Yorkshire, and Duroc (LYD) pigs were graded with the Korean Pig Carcass Grade System. Amounts of belly, neck, loin, tenderloin, spare ribs, shoulder, and ham were estimated with AutoFom III. Regression equations for seven primal cuts according to each grade were derived. There were significant differences among the three carcass grades due to heteroscedasticity variance (p < 0.0001). Three regression equations were derived from AutoFom III estimation of primal cuts according to carcass grades. The coefficient of determination of the regression equation was 0.941 for grade 1+, 0.982 for grade 1, and 0.993 for grade 2. Regression equations obtained from this study are suitable for AutoFom III software, a useful tool for the analysis of each pig carcass grade in the Korean Pig Carcass Grade System. The high reliability of predicting the amount of primal cut with AutoFom III is advantageous for the management of slaughterhouses to optimize their product sorting in Korea.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0