메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this paper, we propose a behavior learning algorithm of the collective autonomous mobile robots based on the reinforcement learning and conditional evolution. The cooperative behavior is a high level phenomenon observed in the society of social animals and, recently the emergence of cooperative behavior in collective autonomous mobile robots becomes an interesting field in artificial life. In our system each robot with simple behavior strategies can adapt to its environment by means of the reinforcement learning. The internal reinforcement signal for the reinforcement learning is generated by fuzzy inference engine, and dynamic recurrent neural networks are used as an action generation module. We propose conditional evolution for the emergence of cooperative behavior. The evolutionary conditions are spatio-temporal limitations to the occurrence of genetic operations. We show the validity of the proposed learning and evolutionary algorithm through several computer simulations.

목차

Abstract

Ⅰ. Introduction

Ⅱ. Fuzzy Inference based Reinforcement Learning(FIRL)

Ⅲ. Cooperative Behavior by Conditional Evolution Algorithm

Ⅳ. Simulations

Ⅴ. Conclusions

Acknowledgement

References

저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017766562