메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김학준 (경희사이버대학교) 정광민 (한국문화관광연구원)
저널정보
한국관광레저학회 관광레저연구 관광레저연구 제28권 제9호 (통권 제109호)
발행연도
2016.9
수록면
297 - 316 (20page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Using the Semantic Network Analysis which is a big data analysis technique, this study aimed to analyze the research trend of aviation-related papers based on their keywords among whole journals in social science area of National Research Foundation of Korea from 2013 to 2015. The keyword showing the highest frequency in 2013 was ‘airline’, and then it was followed by "aviation", "customer", "satisfaction", "cost", and "service", which showed that researches have mainly focused on aviation, customer, and satisfaction. The keyword showing the highest frequency in 2014 was "service", and then it was followed by "quality", "aviation", "satisfaction", "customer", and "service quality". The keyword showing the highest frequency in 2015 was ‘airline’, and then it was followed by ‘aviation’, ‘service’, ‘low-cost airline’, ‘flight attendant’, ‘customer’, and ‘brand’. In the results of the semantic network analysis on keywords of research papers in 2013, ‘aviation’ and ‘airline’ were in the center of researches and also had strong correlations with keywords like "service", "customer", and "satisfaction", which shows the outstanding trend of research on service and customer of airlines. In 2014, keywords like ‘aviation’, ‘quality’, and ‘customer’ were in the center, and each keyword had strong relations with more concrete keywords. In 2015, "aviation" and "airline" were located in the center similarly to 2013, and also showed strong relations between "aviation" and "law", "airplane", and "management", and between ‘airline’ and ‘flight attendant’, ‘satisfaction’, ‘service’, ‘customer’, and ‘quality’.

목차

Abstract
I. 서론
II. 이론적 배경
III. 연구방법
IV. 실증분석 결과
V. 결론
참고문헌

참고문헌 (40)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-323-001351681