메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Ji Hyun Kim (Sunchon National University) Jae Yoon Cha (Dong-A University) Tai Sun Shin (Chonnam National University) Soon Sil Chun (Sunchon National University)
저널정보
한국식품영양과학회 Preventive Nutrition and Food Science Preventive Nutrition and Food Science Vol.23 No.3
발행연도
2018.9
수록면
245 - 253 (9page)
DOI
10.3746/pnf.2018.23.3.245

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
This study was conducted to characterize the volatile components of Korean fermented tea and blended tea with Korean fermented tea and several herbs. A total of 161 volatile components in 4 samples of FT (fermented tea), BT (blended tea) 1, BT2, and BT3 were analyzed in this study. A total of 61 volatile compounds were identified in the FT sample, which contained the most abundant hydrocarbons. The major compounds were 3-methyldecane (10.48%), 2,2,4, 6,6-pentamethylheptane (10.00%), and 2,3,6-trimethyloctane (7.90%). A total of 75 volatile compounds were identified in the BT1 sample, which consisted of fermented tea, orange cosmos, lemon grass, chamomile, and peppermint. L-(-)-menthol (36.79%), menthone (24.92%), and isomenthone (8.70%) were the highest compounds. A total of 76 volatile compounds were identified in the BT2 sample, which was composed of fermented tea, rose hip, lemongrass, lavender, and peppermint. Alcohols were identified as the most abundant, and linalool (26.32%), linalyl acetate (18.45%), and L-(-)-menthol (11.99%) were the major components. A total of 85 volatile compounds were identified in the BT3 sample composed of fermented tea, citrus peel, chamomile, hibiscus, and beet. Sesquiterpenes were identified as the most abundant including L-limonene (74.45%), β-myrcene (3.06%), and γ-terpinene (7.47%).

목차

ABSTRACT
INTRODUCTION
MATERIALS AND METHODS
RESULTS AND DISCUSSION
REFERENCES

참고문헌 (42)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0