메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국과학교육학회 한국과학교육학회지 한국과학교육학회지 제38권 제2호
발행연도
2018.1
수록면
219 - 234 (16page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
본 연구에서는 국내 교육학 연구에서 거의 사용되지 않던 머신 러닝 기술을 과학 교육 연구에 접목하여, 학생들의 과학 논변 활동에서 나타나는 논변의 구성 요소를 분석하는 과정을 자동화할 수 있는 가능성을 탐색해보았다. 학습 데이터로는 Toulmin이 제안하였던 틀에 따라 학생들의 과학 논변 구성 요소를 코딩한 국내 선행 문헌 18건을 수합하고 정리하여 990개의 문장을 추출하였으며, 테스트 데이터 로는 실제 교실 환경에서 발화된 과학 논변 전사 데이터를 사용하여 483개의 문장을 추출하고 연구자들이 사전 코딩을 수행하였다. Python의 ‘KoNLPy’ 패키지와 ‘꼬꼬마(Kkma)’ 모듈을 사용한 한국어 자연어 처리(Natural Language Processing, NLP)를 통해 개별 논변을 구성하는 단어와 형태소를 분석하였으며, 연구자 2인과 국어교육 석사학위 소지자 1인의 검토 과정을 거쳤다. 총 1,473개의 문장에 대한 논변—형태소:품사 행렬을 만든 후에 다섯 가지 방법으로 머신 러닝을 수행하고 생성된 예측 모델과 연구자의 사전 코딩을 비교한 결과, 개별 문장의 형태소만을 고려하였을 때에는 k-최근접 이웃 알고리즘 (KNN)이 약 54%의 일치도(κ = 0.22)를 보임으로써 가장 우수하였 다. 직전 문장이 어떻게 코딩되어 있는지에 관한 정보가 주어졌을 때, k-최근접 이웃 알고리즘(KNN)이 약 55%의 일치도(κ = 0.24)를 보였으며 다른 머신 러닝 기법에서도 전반적으로 일치도가 상승하였 다. 더 나아가, 본 연구의 결과는 과학 논변 활동의 분석에서 개별 문장을 고려하는 단순한 방법이 어느 정도 유용함과 동시에, 담화의 맥락을 고려하는 것 또한 필요함을 데이터에 기반하여 보여주었다. 또한 머신 러닝을 통해 교실에서 한국어로 이루어진 과학 논변 활동을 분석하여 연구자와 교사들에게 유용하게 사용될 수 있는 가능성을 보여준다.

목차

등록된 정보가 없습니다.

참고문헌 (79)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0