메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Jee-Seong Kim (Seoul National University) Chul-Hong Kim (Seoul National University) Yong-Min Shin (LG Electronics) Dong-Il “Dan” Cho (Seoul National University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2020
발행연도
2020.10
수록면
1,040 - 1,045 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
An outdoor environment is challenging for the localization of a mobile robot. For robust visual odometry, accurate feature matching and triangulation are essential. The features extracted from the windows of buildings and car surfaces lead to wrong triangulation results due to reflective features. The landmarks at short-distances affect the feature matching performance and the landmarks at long-distances cause triangulation errors. Inaccurate feature matching and triangulation error lead to the localization error of the robot pose. In this paper, an outdoor monocular visual odometry using the pre-trained depth estimation network and semantic segmentation network is proposed. By using the pre-trained semantic segmentation network, a semantic label is predicted for every pixel. Also, by using the pre-trained depth map estimation network, the depth of every pixel is predicted. Using semantic constraints for feature matching and depth constraint for triangulation, the accuracy of these procedures is enhanced. Additionally, pose graph optimization is performed on every estimated robot pose and landmark position. The performance of the proposed method is evaluated using dataset-based experiments. The experiments showed that the proposed algorithm is more accurate than the visual odometry algorithm that uses Oriented FAST and rotated BRIEF (ORB) features.

목차

Abstract
1. INTRODUCTION
2. RELATED WORKS
3. PROPOSED METHOD
4. EXPERIMENTS
5. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-003-001569009