메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이상구 (성균관대학교) 남윤 (성균관대학교 기초과학연구원) 이재화 (성균관대학교) 김응기 (성균관대학교)
저널정보
한국수학교육학회 수학교육 논문집 수학교육 논문집 제37권 제2호
발행연도
2023.6
수록면
277 - 297 (21page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
합성곱(convolution)은 인공지능(artificial intelligence)에서 컴퓨터 비전(computer vision), 심층학습(deep learning) 등의 분야를 이해하고 응용하려면 알아야 하는 중요한 수학적 연산이다. 그러나 현재의 공학수학 교과과정의 합성곱내용은 독립적인 주제가 아니라 단편적으로 다루어지고 있어서 그 의미를 충분히 전달하지 못하고 있다. 이에 본 논문에서는 공학수학에서 인공지능 교육과 연계할 수 있도록 개발한 합성곱 교수·학습 자료를 제시한다. 먼저 기존 공학과 인공지능 기술의 통합적 관점에서 합성곱에 대한 배경지식과 응용 사례를 정리하고, 코딩을 이용한 교육이 가능하도록 파이썬(Python)/SageMath 코드를 개발하여 제공한다. 또한 합성곱 지식이 인공지능에서 어떻게 활용되는지 보여주는 구체적인 예시로, 이미지 분류에 사용되는 합성곱신경망(Convolutional Neural Network, CNN)을 개발된코드와 함께 제공한다. 본 교수·학습자료는 합성곱 개념을 쉽고 효과적으로 교육할 수 있도록 공학수학의 보충 자료로 활용가능하며, 학습자는 코딩을 통해 합성곱을 배우고 본인의 전공과 관련된 인공지능 기술을 학습하는 데 이를이용할 수 있다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0