메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Sangwon Han (Hanyang University) Jaeun Ryu (Hanyang University) Gihoon Kim (Hanyang University) Jaeho Choi (Hanyang University) Kunsoo Huh (Hanyang University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2022
발행연도
2022.11
수록면
1,630 - 1,635 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
As the autonomous driving expands to complex road environment, the importance of collision avoidance is emerging across industries and academia, and its application for passenger cars has been actively studied. Because the dynamic characteristics of low-floor buses are different from those of passenger cars, it is necessary to develop a corresponding collision avoidance and path tracking algorithms. In this paper, a novel Pure-Pursuit controller and collision avoidance trajectory planner considering vehicle stability for buses are proposed. First, in order to compensate for the shortcomings of the geometry-based Pure-Pursuit controller, yaw rate gain and yaw rate response analyzed from the actual vehicle data are considered to improve the stability of the bus. In addition, the Conditional Integration-Proportion Integral (CI-PI) controller is designed to reduce the effect of disturbances. Secondly, the trajectory planner is developed taking into account not only the surrounding object information, but also the dynamic limitation of the bus. A group of trajectory candidates including dynamic relation of the lateral motion is generated that satisfies path stability with pole-zero analysis. Then, an optimal trajectory is selected through the cost function which reflects the dynamic constraints. Finally, stability and performance of the proposed controller are verified through simulations and field tests.

목차

Abstract
1. INTRODUCTION
2. VEHICLE CONTROLLER DESIGN
3. OPTIMAL TRAJECTORY PLANNING FOR COLLISION AVOIDANCE
4. SIMULATION RESULT
5. EXPERIMENTAL TEST
6. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0