메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이상빈 (한국외국어대학교)
저널정보
한국번역학회 번역학연구 번역학연구 제19권 제3호
발행연도
2018.9
수록면
259 - 286 (28page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In his research on machine translation post-editing (Lee 2017; Lee 2018), the author revealed two important factors: (1) types of post-editing errors made by five undergraduate students majoring in English-Korean translation and (2) the students’ perceptions of post-editing of free online machine translation (FOMT). As a follow-up study to Lee (2017, 2018), this paper aims to show how undergraduate students post-edit the output of Google Translate and to discuss implications of findings for post-editor training. For this purpose, the author conducted a small-scale experiment, in which the five students post-edited medical texts with Google Translate, while verbalising their thoughts at the same time. Data were collected by recording the students’ think-alouds and computer screen activities. Analysis shows that the students inefficiently performed post-editing by using dictionaries too frequently and spending too much time on non-technical words. In addition, some students pre-edited the source text in a questionable way and translated the source text from scratch for unjustifiable reasons. Based on these results, the study discusses four issues that should be addressed to improve post-editor training. First, the top priority should be given to improving students’ basic translation competence rather than skills specific to post-editing. Second, instrumental subcompetence is still of critical importance to developing students’ post-editing competence. Third, revision should be adopted as a main component of translator/post-editor training. Fourth, research on language-specific pre-editing should be conducted before integrating pre-editing into post-editor training programmes.

목차

1. 서론
2. 선행연구 분석
3. 연구 방법
4. 분석 결과
5. 논의 및 결론
참고문헌
Abstract

참고문헌 (33)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-800-003594213