메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
추성엽 (천호초등학교) 민덕기 (청주교육대학교)
저널정보
한국초등영어교육학회 초등영어교육 초등영어교육 제26권 제2호
발행연도
2020.1
수록면
55 - 80 (26page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The purpose of this study aims to develop the algorithm that automatically assesses English vocabulary from students’ discourses by using the natural language toolkit (NLTK) and the artificial intelligence (AI) chatbot. The way to build the algorithm was as follows: First, three task-based AI chatbots were built by using Google Dialogflow API (Application Programming Interface) and discourses were transcribed automatically by the API’s history function. Second, the vocabulary data from three objective assessment criteria (Compleat Lexical Tutor VP-kids, CEFR, CEFR-J) were compared with textbooks, and new criteria were reorganized. Third, the discourses were tokenized and the parts of speech (POS) of the words utilized throughout the discourses were tagged by using Python programming language and the NLTK. Furthermore, different meanings of the vocabularies, depending on contexts, were analyzed and graded through Python text mining. Finally, the results were confirmed by experimentally distributing the utterance data from a 6th-grade student interaction with a chatbot among the three chatbots used in the study. Through the application of the algorithm, the vocabularies were evaluated properly by showing the expected results. However, the gradual development of the NLTK POS tagger is needed as some words were tagged incorrectly. Nevertheless, this algorithm showed the possibility of a collaboration of human, AI chatbots, and automation technology for highly efficient English assessment.

목차

등록된 정보가 없습니다.

참고문헌 (45)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0